skip to main content


Search for: All records

Creators/Authors contains: "LaBumbard, Brandon C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Our current understanding of vertebrate skin and gut microbiomes, and their vertical transmission, remains incomplete as major lineages and varied forms of parental care remain unexplored. The diverse and elaborate forms of parental care exhibited by amphibians constitute an ideal system to study microbe transmission, yet investigations of vertical transmission among frogs and salamanders have been inconclusive. In this study, we assess bacteria transmission inHerpele squalostoma,an oviparous direct-developing caecilian in which females obligately attend juveniles that feed on their mother’s skin (dermatophagy).

    Results

    We used 16S rRNA amplicon-sequencing of the skin and gut of wild caughtH. squalostomaindividuals (males, females, including those attending juveniles) as well as environmental samples. Sourcetracker analyses revealed that juveniles obtain an important portion of their skin and gut bacteria communities from their mother. The contribution of a mother’s skin to the skin and gut of her respective juveniles was much larger than that of any other bacteria source. In contrast to males and females not attending juveniles, only the skins of juveniles and their mothers were colonized by bacteria taxa Verrucomicrobiaceae, Nocardioidaceae, and Erysipelotrichaceae. In addition to providing indirect evidence for microbiome transmission linked to parental care among amphibians, our study also points to noticeable differences between the skin and gut communities ofH. squalostomaand that of many frogs and salamanders, which warrants further investigation.

    Conclusion

    Our study is the first to find strong support for vertical bacteria transmission attributed to parental care in a direct-developing amphibian species. This suggests that obligate parental care may promote microbiome transmission in caecilians.

     
    more » « less
  2. Abstract

    Accurately predicting the impacts of climate change on wildlife health requires a deeper understanding of seasonal rhythms in host–pathogen interactions. The amphibian pathogen,Batrachochytrium dendrobatidis(Bd), exhibits seasonality in incidence; however, the role that biological rhythms in host defences play in defining this pattern remains largely unknown.

    The aim of this study was to examine whether host immune and microbiome defences againstBdcorrespond with infection risk and seasonal fluctuations in temperature and humidity.

    Over the course of a year, five populations of Southern leopard frogs (Rana[Lithobates]sphenocephala) in Tennessee, United States, were surveyed for host immunity, microbiome and pathogen dynamics. Frogs were swabbed for pathogen load and skin bacterial diversity and stimulated to release stored antimicrobial peptides (AMPs). Secretions were analysed to estimate total hydrophobic peptide concentrations, presence of known AMPs and effectiveness ofBdgrowth inhibition in vitro. The diversity and proportion of bacterial reads with a 99% match to sequences of isolates known to inhibitBdgrowth in vitro were used as an estimate of predicted anti‐Bdfunction of the skin microbiome.

    Batrachochytrium dendrobatidisdynamics followed the expected seasonal fluctuations—peaks in cooler months—which coincided with when host mucosal defences were most potent againstBd. Specifically, the concentration and expression of stored AMPs cycled synchronously withBddynamics. Although microbiome changes followed more linear trends over time, the proportion of bacteria that can function to inhibitBdgrowth was greatest when risk ofBdinfection was highest.

    We interpret the increase in peptide storage in the fall and the shift to a more anti‐Bdmicrobiome over winter as a preparatory response for subsequent infection risk during the colder periods when AMP synthesis and bacterial growth is slow and pathogen pressure from this cool‐adapted fungus is high. Given that a decrease in stored AMP concentrations as temperatures warm in spring likely means greater secretion rates, the subsequent decrease in prevalence suggests seasonality ofBdin this host may be in part regulated by annual immune rhythms, and dominated by the effects of temperature.

     
    more » « less